
CS 4510

Primitive Recursive Functions

Name: Abrahim Ladha

1.1 Primitive recursion

Long ago, we thought the chemical elements to be distinct, but we now know them as just permu-
tations of the same fundamental building blocks; atoms. In the same way, you may notice that all
functions which occur to you naturally are made up of smaller, more atomic functions, combined
via composition. Take a moment to think of a set of small atomic functions which could not be
made up of smaller functions.

These three functions we define to be primitive recursive:

Zero: N(x) = 0

Successor: S(x) = x+ 1

Projection: Un
i (x1, ..., xn) = xi

A function is primitive recursive if it is obtained by applying two operations to other primitive
recursive functions. Those two operations:

• Composition: If g1, ..., gn, f ∈ PR, then f(g1(·), ..., gn(·)) ∈ PR.

• Primitive Recursion: For f, g ∈ PR, we say h is PR when h(0, x1, ..., xk) = f(x1, ..., xk) and
h(S(y), x1, ..., xk) = g(y, h(y, x1, ..., xk), x1, ..., xk).

Definition 1.1 The set of primitive recursive functions (PR) is the smallest set containing N,S, U ,
and maintains closure under composition and primitive recursion.

The composition operation is quite natural. For the primitive recursion operation, the first
parameter of h is the depth of recursion. The first statement says that the base case is PR. The
second statement is recursive. This is saying that h(y, ...) being PR will imply that h(S(y), ...) is
PR.

To prove a function h(y, x) is primitive recursive is similar to induction, and requires two
steps. First show h(0, x) is primitive recursive. Then assuming h(y, x) is primitive recursive, show
h(S(y), x) is also primitive recursive. This is not so intuitive, and I believe is better learned by
example:

Here we show that addition is primitive recursive.

• add(0, x) = U1
1 (x)

• add(S(y), x) = S(add(y, x))

Once you prove a function is primitive recursive, then you may use it to build up other more
complex functions, and show those are primitive recursive. Here we will show multiplication, built
from addition.

1-1

1-2

• mul(0, x) = N(x)

• mul(S(y), x) = add(mul(y, x), x)

1.2 PR (R

Every primitive recursive function is computable1 but the converse is false. Not every computable
function is primitive recursive. One example is the Ackermann function, constructed exactly to be
not so:

A(m,n) =


n+ 1 m = 0
A(m− 1, 1) m > 0, n = 0
A(m− 1, A(m, (n− 1))) m,n > 0

It grows really fast. A(4, 3) = 22
22

22

− 3. This number does not fit into any calculator I have
tried. The primitive recursive functions correspond to turing machines whose time complexity is
bounded in the size of the input. If you think of code, any for loop must have the number of
iterations fixed before the loop starts.

I don’t have any particular feelings about the Ackermann function2. Here is another kind
of proof of existence of a computable function which is not primitive recursive. We proceed by
diagonalization. Let ψ1, ψ2, ... be an ordering3 of primitive recursive functions. Then let φ(x, y) =
ψx(y). That is φ takes on two integral arguments, and is equal to the x’th primitive recursive
function of variable y. Let ψ(x) = φ(x, x) + 1. Assume to the contrary ψ(x) is primitive recursive.
Then there is index for it. There exists n such that ψ(x) = ψn(x). Then by definition, ψ(x) =
φ(n, x). Take x = n. It then follows that

φ(n, n) = ψn(n) = ψ(n) = φ(n, n) + 1 (1.1)

A contradiction! Therefore, ψ is not primitive recursive.

1Exercise, see 9.
2You may find a clean proof that A 6∈ PR here: http://www.cs.tau.ac.il/ nachumd/term/42019.pdf
3Convince yourself that PR is a countable set, so there must exist some bijection N → PR. In the next sheets we

will learn about Gödel numberings. This ordering is a weaker version of that.

http://www.cs.tau.ac.il/~nachumd/term/42019.pdf

1-3

1.3 Problems

Turn in 6 of the first 8 problems along with 9. You may use the results of problems in your solutions
to other problems.

1. Let P (0) = P (1) = 0 and P (S(x)) = x otherwise. Prove that P is primitive recursive.

2. Prove that the identity function, id(x) = x is primitive recursive.

3. Prove that for any constant c, f(x) = c is primitive recursive

4. Prove x! is primitive recursive

• 0! =

• S(x)! =

5. Prove xy is primitive recursive

• exp(0, x) =

• exp(S(y), x) =

6. Let (represent truncated subtraction. If x − y is non-negative, then x (y = x − y, and
x(y = 0 if x < y. Prove truncated subtraction is primtive recursive.

7. Prove that max(x, y) is primitive recursive.

8. Compute4 A(1,2) and A(3,3).

9. Prove every primitive recursive function is computable. (Hint: use induction on the depth of
recursion. The base case is one of N,S, U)

10. Let the Collatz function be

C(n) =

{
n/2 if even

3n+ 1 if odd
(1.2)

Let D(n) be the program such that x = n, while x 6= 1, x← C(x). Prove that if D is primitive
recursive, then the Collatz conjecture is true.

Further Reading

[1] Martin Davis. Computability and Unsolvability. 1982 ed. 1958.

4It is okay to use programming, just mention how you did it.

	Primitive recursion
	PR R
	Problems

