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Parikh’s Theorem

Name: Frederic Faulkner

1.1 Deliverables

There are 9 problems on this sheet (five during the proof and four at the end). Turn in 6 of the 9.

1.2 Introduction

Parikh’s theorem states that context-free languages are equivalent to regular languages if you ignore
the order of the letters in a word. We will prove the theorem together by working through several
flawed proofs, and then explore some consequences of the theorem.

Definition 1.1 Given an alphabet Σ with characters s1, ..., s|Σ|, define the function Ψ : Σ∗ → N|Σ|
by Ψ(w) = [n1, ..., n|Σ|] where ni is the number of occurrences of si in w. As an example, let
Σ = {a, b, c}. Then Ψ(ababa) = [3, 2, 0].

Definition 1.2 For a language L, define Ψ(L) = {Ψ(w) | w ∈ L}

Theorem 1.3 (Parikh’s Theorem) For any context-free language L, there is a regular language
R such that Ψ(L) = Ψ(R). We say that L and R are “letter-equivalent”.

Problem 1: Let L1 = {anbn | n ∈ N} and let L2 = {w | w is a palindrome}. Give regular
languages R1 and R2 such that Ψ(L1) = Ψ(R1) and Ψ(L2) = Ψ(R2).

How do we prove Parikh’s theorem? The core idea of the proof relies on the concept from the
pumping lemma of pumping downwards. Making a shorter string from a longer string allows us to
do strong induction on the length of the string. Furthermore, there are a finite number of ways to
pump a string downwards, and finite sets play nice with regular languages.

Definition 1.4 Given a context-free language L, let G be a grammar that generates L and let p
be the pumping length of L. Define B = {w ∈ L | |w| < p} and C = {xy ∈ Σ∗ | |xy| ≤ p and for

some nonterminal A in G, A
∗
=⇒ xAy}.

Dubious Claim 1.5 Clearly BC∗ is a regular language. Perhaps we could show that Ψ(L) =
Ψ(BC∗).

Problem 2: Show that Ψ(L) ⊆ Ψ(BC∗), using the pumping lemma and strong induction on the
length of the string.

Now we try to prove Ψ(BCn) ⊆ Ψ(L) for all n by induction. Since B ⊆ L, Ψ(B) ⊆ Ψ(L). Now,
suppose Ψ(BCi) ⊆ Ψ(L). If w ∈ BCi+1, we can write w = w0s, where w ∈ BCi and s ∈ C. By
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the inductive hypothesis, there is a word w′ ∈ L with Ψ(w′) = Ψ(w0). We know that there is some

nonterminal A such that s = xy and A
∗
=⇒ xAy. Unfortunately, there is no way to complete this

step, since the derivation of w doesn’t necessarily contain A.1

So what do we do? Well, the inductive proof above would have worked out if we had a way of
forcing the derivation of w to contain the terminals we need. This gives rise to the following idea:
separate the words of L into subsets as determined by the nonterminals used in their derivations.
Then, if we can show that each subset is letter-equivalent to a regular language, we will be done.
(Why?)

Definition 1.6 For any U , a subset of the nonterminals of G, define LU = {w | w ∈ L and some
derivation of w by G contains every nonterminal in U}. (Note that ∪ULU = L.) Then define BU =

{w ∈ LU | |w| < p} and CU = {xy ∈ Σ∗ | |xy| ≤ p and for some nonterminal A in U , A
∗
=⇒ xAy}.

Dubious Claim 1.7 Ψ(LU ) = Ψ(BUC
∗
U )

Problem 3: Following the proof outline at the bottom of page 1, show that Ψ(BUC
n
U ) ⊆ Ψ(LU )

for n ∈ N.

Unfortunately, now the inductive proof that you gave above for Ψ(L) ⊆ Ψ(BC∗) doesn’t work
to show Ψ(LU ) ⊆ Ψ(BUC

∗
U ).

Problem 4: Why not? (Hint: pumping down doesn’t quite work anymore, as we’re no longer
inducting over strings of L!)

We’re almost there! But we need a slightly stronger version of the pumping lemma.

Theorem 1.8 (Stronger Pumping Lemma for Context-Free Languages) Let L be a context-
free language. Then there exists a p such that, if w ∈ L and |w| ≥ pk, then there is some ter-

minal A such that S
∗
=⇒ uAz

∗
=⇒ uv1Ay1z

∗
=⇒ uv1v2Ay2y1z

∗
=⇒ ...

∗
=⇒ uv1v2...vkAyk...y2y1z

∗
=⇒

uv1v2...vkxyk...y2y1z = w, with |v1v2...vkxyk...y2y1| ≤ pk. Note that for k = 1 this is just the
ordinary pumping lemma.

The proof of this stronger form of the pumping lemma follows the same structure as the proof
of the normal pumping lemma: if a derivation tree is tall enough, it must contain a long path, and
a long enough path must contain some nonterminal repeated at least k + 1 times.

Now, let k = |U | and after the following definitions we can finally prove Parikh’s theorem.

Definition 1.9 Let B′U = {w ∈ LU | |w| < pk} and C ′U = {xy ∈ Σ∗ | |xy| ≤ pk and for some

nonterminal A in U , A
∗
=⇒ xAy}.

Correct Claim 1.10 Ψ(LU ) = Ψ(B′UC
′∗
U )

Problem 5: Ψ(B′UC
′∗
U ) ⊆ Ψ(LU ) follows almost unchanged from the proof you gave in problem

3. Now, using the Stronger Pumping Lemma for CFL’s, prove the reverse direction, i.e. that
Ψ(LU ) ⊆ Ψ(B′UC

′∗
U ). (The proof closely follows the original proof in problem 2, but now you can

pump down in a certain way to stay in LU .)
1Of course, failing to prove a statement doesn’t mean that the statement is false. Can you give an example of a

grammar G such that Ψ(BC∗) 6⊆ Ψ(L(G))?
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1.3 Additional Problems

• Problem 6: Show that LU is in fact a context-free language.

• Problem 7: Use Parikh’s theorem to show that every context-free language over a unary al-
phabet is regular.

• Problem 8: A set S is linear if for some fixed a0, a1, ..., an, we can write S = {a0+x1a1+x2a2+
...+ xnan | xi ∈ N}. A set is semi-linear if it can be written as the union of linear sets. Show
that if L is context-free, Ψ(L) is semi-linear. (Hint: use the fact that Ψ(LU ) = Ψ(B′UC

′∗
U ))

• Problem 9: Show that if Ψ(L) is semi-linear, then there is a regular language R such that
Ψ(R) = Ψ(L). (Hint: start with the linear case, then use the union property for regular
languages.)


