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2.1 Pumping

The pumping lemma is not a perfect characterization of non-regular languages. There exist lan-
guages which can satisfy the conditions of the pumping lemma, but be non-regular.

2.2 Myhill-Nerode

Lucky for us, there does exist a perfect characterization. It helps us prove non-regular languages
to be non-regular, or regular languages to be regular. It also implies a unique and minimal1 DFA
for each regular language.

To give a high level idea, for any DFA D, and two strings which end on the same state in D, say
x, y. Since it is deterministic, there is one outgoing transition from that state on 0, so x0, y0 will
also end in the same state given x, y ended in the same state. We can abuse this! Lets generalize.

For a language L, let ∼L be an equivalence relation on Σ∗ defined by x ∼L y if for all z ∈ Σ∗,
xz ∈ L ⇐⇒ yz ∈ L. Note that taking z = ε shows that, if x ∼L y, then either both x and y are
members of L, or neither is.

Theorem 2.1 L is regular if and only if ∼L partitions Σ∗ into a finite number of equivalence
classes.

( =⇒ ) Suppose L is regular, and thus has a DFA to decide it, lets denote as D. For each x ∈ Σ∗,
running x on D will stop in some state. Let [qi] be the set of all strings which stop on state
qi. Notice there are a finite number of such sets, one for each state, and Σ∗ = ∪ni=1[qi], with
each disjoint2. Let x, y ∈ [qi], and let z ∈ Σ∗, and let qj be the state D finishes if it starts in
qi and reads z. Then xz and yz both cause the machine to end in qj . If qj is an accept state,
xz, yz ∈ L; if qj is a non-accept state, xz, yz /∈ L. This implies xz ∈ L ⇐⇒ yz ∈ L whenever
x ∼ y. Each set [qi] is then an equivalence class of ∼L, and there are a finite number of them.

(⇐= ) Let ∼L partition Σ∗ into a finite number of equivalence classes. We can construct a DFA to
decide L. Recall a DFA has the form (Q,Σ, δ, q0, F ). Let qi ∈ Q be the states and [qi] be the
equivalence class for qi.

– Q : Form n states, one for each equivalence class of ∼L.

– Σ : is the alphabet of L.

– δ : For each qi ∈ Q, a ∈ Σ, and x ∈ [qi], define δ(qi, a) = the state for the class which
contains xa. 3

1with respect to the number of states
2And for qf the final state, L = [qf ]
3For this function to be well defined, we need that x ∼L y =⇒ xz ∼L yz. Do you see why?
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– q0 : Let the start state be the state for the equivalence class which contains ε

– F : For each state qj ∈ Q, determine if an element of L is contained in the equivalence
class for qj .

This is a well defined DFA, which decides L. This implies that L is regular.

2.3 Usage

To use the theorem to prove a language is regular, show that ∼L exhibits a finite number of
equivalence classes.

As an example, we prove {12n | n ∈ N} is regular4. Consider the sets [q0], [q1], [q2] where [q2]
is all string containing at least one zero, [q0] is all even strings of ones, and [q1] is odd strings of
ones. Notice that each of these sets partition Σ∗ = [q0] ∪ [q1] ∪ [q2], and they are pairwise disjoint.
For any x, y ∈ [q2] then xz, yz ∈ [q2] since they still contain a zero. For x, y both even or both odd
length, and z no zeroes, then the parity of xz, yz is the same if the parity of x, y is. If z has a zero,
then xz, yz again both are in [q2].

To use the theorem to prove a language is non-regular, give an infinite set S of strings, such
that for each pair of strings x, y ∈ S there is a least one string z such that xz ∈ L, yz /∈ L or vice
versa. Then each string of S must belong to a separate equivalence class of ∼L, so if S is infinite,
there are infinitely many equivalence classes. Note that you may have a different z for each pair
x, y.

As an example, we prove {0n1n | n ∈ N} is not regular. Let S = {0i|i ∈ N}. Then, for any two
elements x, y = 0j , 0k in S with j 6= k, z = 1j gives xz ∈ L, but yz 6∈ L.

Note that, if you are trying to prove a language regular, there is almost always a simpler method
available than the Myhill-Nerode theorem. Similarly, to prove the non-regularity of a language on
exams and homeworks, we encourage you to use the pumping lemma rather than the Myhill-Nerode
theorem. It is a powerful tool, but can be difficult to use correctly.

2.4 Problems

Turn in number 1 and two of the remaining problems.

1. Prove that ∼L is an equivalence relation.

2. Give an example of a non-regular language that cannot be proved to be non-regular using the
pumping lemma. (Prove your work, do not just state the language.)

3. Let Ln,c = {1k | k ≡ c (mod n)}. Prove this language is regular for any c, n WITHOUT
constructing a DFA.

4. Prove that the DFA from the proof in 1.2 is minimal (i.e. there is no DFA for L with fewer
states.)

5. Let L = {1n2 | n ∈ N}. Prove that L is not regular using the theorem.

Of additional interest to you may be problems 1.47,1.485 from the Sipser book.
4You should see this is regular quickly as this is just (11)∗, and existence of a regular expression implies it is

regular.
51.34, 1.35 in the first edition


