CS 4510

Kolmogorov Complexity

Name: Abrahim Ladha

1.1 Book

Please read through section 6.4, pages 261-269 of the Sipser book¹ before continuing. The book refers to K(x) as minimal description, but this can be confused with something from machine learning, so we denote it as Kolmogorov complexity

1.2 Proofs

Theorem 1.1 There does not exist a computable function for K(x)

Proof: Suppose K(x) is computable. Lets contruct the following TM M: Lexographically for each $x \in \Sigma^*$, check if $K(x) > |\langle M \rangle|$, and return the first x. This program outputs the shortest x such that $K(x) > |\langle M \rangle|$, but M prints x, and is exactly size $|\langle M \rangle|$, a contradiction.

I think this proof is really beautiful because it is so simple. Here $|\langle M \rangle|$ is hardcoded into the machine, but if you want a stronger idea, you may apply the recursion theorem from 6.1 of Sipser, which states that any machine has access to its own encoding.

Theorem 1.2 $R = \{x \in \Sigma^* \mid K(x) \ge |x|\}$ is undecidable

Proof: Suppose not. Then there exists a TM M which decides R. We construct the following machine M'. It takes as input an integer n, and for each $x \in \{0,1\}^n$ lexographically, returns the first x such that M(x) says $x \in R$. Then $K(x) \ge n$, but we can represent x in $\log n$ bits, so $K(x) < \log n + c$, which for large enough n is not true.

We have shown that the imcompressible strings are undecidable, but it is also true that the compressible strings are undecidable, by a similar proof.

1.3 Proof by Method of Incompressibility

Kolmogorov complexity can be a very useful, if niche, part of your theorem proving toolkit. Here are some applications.

Theorem 1.3 $L = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof: Suppose L is regular, then it has some DFA D to decide it. Suppose on input 0^i we end on state q. Then on input a series of 1s, we will be in the accept state if and only if we input exactly i 1s. We then have a description of i, as the DFA plus the state q, so $K(i) \leq |D| + c$. Choose some i such that $K(i) \geq \log i + c$, and then we have a contradiction for sufficiently large i.

¹If you need a copy send me an email

Theorem 1.4 (Euclid's Theorem) There are infinitely many primes

You are probably familar with the classical euclidean proof, but here is one of a different kind. **Proof:** Suppose not. Let $p_1, ..., p_k$ be finitely many primes. Let x be an incompressible string, and let n be the integer representation of x. Then there exists $e_1, ..., e_k$ such that $n = p_1^{e_1} ... p_k^{e_k}$. Each $e_i < \log n$ so $|e_i| < \log \log n$, but then $K(x) < k \log \log n + c$, a contradiction since we assumed xto be incompressible.

Theorem 1.5 Any TM to decide $\{xx^R \mid x \in \Sigma^*\}$, the palindromes, takes $\Omega(n^2)$

We won't prove the theorem, here, but in another worksheet. It is an interesting result since the first naive way to decide the palindromes is $O(n^2)$, so this says we can't do much better.

1.4 Problems

Turn in 4 of 5

- 1. Can you give two complex strings x_1, x_2 such that $x_1 + x_2$ is simple? Here addition is bitwise, like integers.
- 2. Give an upper bound to the ratio of strings of length n have the property that $K(x) \leq |x| 3$?
- 3. Give a tight upper bound on $K(x^n)$ for x any string as a function of x and n. (Hint: Sipser covers the case K(xx))
- 4. Give a computable monotonic and decreasing function such that $\lim_{t\to\infty} f(t,x) = K(x)$.
- 5. Let C, C' be a lossless compression algorithm and the corresponding decompression algorithm, and define x.zip as the output of running C on x. Give a lower bound on the length of x.zip.zip....zip in terms of n, x and some constant independent of both, where n is the number of "zips".

Further Reading

- [1] Ming Li and Paul M. B. Vitányi. "A New Approach to Formal Language Theory by Kolmogorov Complexity". In: *CoRR* cs.CC/0110040 (2001). URL: https://arxiv.org/abs/cs/0110040.
- [0] Michael Sipser. Introduction to the Theory of Computation. Cengage learning, 2012.
- [0] Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its applications. Vol. 3. Springer, 2008.
- [0] Lance Fortnow. "Kolmogorov complexity". In: Aspects of Complexity, Minicourses in Algorithmics, Complexity, and Computational Algebra, NZMRI Mathematics Summer Meeting, Kaikoura, New Zealand. Vol. 317. 2000.
- [0] Luca Bortolussi. A short overview of Kolmogorov complexity and its application for proving lower bounds of algorithms.