Quantum Secret Sharing

Abrahim Ladha

November 15, 2019

things quantum computers can do

- Factor integers in $O(n^3)$ compared to $O(\sqrt{p})$ for p the smallest factor
- Database search in $O(\sqrt{N})$ (compared to O(N))
- Solve a linear system in $O(\log(N)\kappa^2)$ (compared to $O(N\kappa)$)

Applications

- Secure Quantum Multiparty Computation
- Quantum Interactive Proofs
- Quantum Oblivious Transfer
- Quantum Bit commitment (is impossible)
- Quantum Key Distribution

review

$$i = \sqrt{-1}$$

$$\blacksquare$$
 $\mathbb{C} = \{a + bi | a, b \in \mathbb{R}\}$

$$ullet$$
 $\alpha = (a + bi)$, define the complex conjugate as $\alpha^* = a - bi$

lacktriangle A Unitary matrix U has inverse U^\dagger

Brakets

- There exists a vector space V such that $\forall \ket{\psi_1},...,\ket{\psi_n} \in V$
- For $\alpha_1,...\alpha_n \in \mathbb{C}$ such that $\sum |\alpha_i|^2 = 1$ then

Brakets

- There exists a vector space V such that $\forall |\psi_1\rangle,...,|\psi_n\rangle \in V$
- For $\alpha_1,...\alpha_n \in \mathbb{C}$ such that $\sum |\alpha_i|^2 = 1$ then
- $\forall |\psi\rangle \in V$, there exists $\langle \psi | \in V_*$ such that $\langle \psi | := |\psi\rangle^\dagger = |\psi\rangle^{*T}$
- Its natural to define the inner product for $|\psi\rangle$, $|\phi\rangle \in V$ as $\langle \phi | \psi \rangle = |\phi \rangle^\dagger | \psi \rangle$

Examples

- We define the outer product as $|\phi\rangle \langle \psi| = (M)_{ij} = [\phi_i \psi_i^*]$
- What is $\langle \psi | \psi \rangle$?

Examples

- lacksquare We define the outer product as $|\phi\rangle\,\langle\psi|=(M)_{ij}=[\phi_i\psi_i^*]$
- What is $\langle \psi | \psi \rangle$?
- Let $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- What is $|0\rangle\langle 0| + |1\rangle\langle 1|$?

Qubits

- A qubit is a ket in the basis $|0\rangle$, $|1\rangle$
- $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ such that $|\alpha|^2 + |\beta|^2 = 1$

Qubits

- A qubit is a ket in the basis $|0\rangle$, $|1\rangle$
- $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ such that $|\alpha|^2 + |\beta|^2 = 1$
- We can tensor product states to form strings

Bloch Sphere

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

Operators

- QM tells us the evolution of any closed system is linear and unitary.
- lacksquare If $|\psi
 angle o |\phi
 angle$, then there exists some U such that $|\phi
 angle = U\,|\psi
 angle$
- $lue{}$ Unitary matrices all have eigenvalues $\pm~1$
- $U^{\dagger}U = I$

Measurement

- Define a set of measurement operators $\{M_i = |i\rangle\langle i|\}$
- lacksquare Probabilty of measurement of state |i
 angle is $\langle\psi|\,M_i\,|\psi
 angle$

Measurement

- Define a set of measurement operators $\{M_i = |i\rangle\langle i|\}$
- Probabilty of measurement of state $|i\rangle$ is $\langle \psi | M_i | \psi \rangle$
- Let $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$
- $(\alpha^* \langle 0|0\rangle + \beta^* \langle 1|0\rangle)(\alpha \langle 0|0\rangle + \beta \langle 1|0\rangle)$

Entanglement

- \blacksquare Sometimes we cannot always write a two qubit state in a nice separable form like $|\psi\rangle\otimes|\phi\rangle$
- Consider $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
- This is a maximally entangled Bell state.
- Measurement of one qubit will alter the other.

Density Operators

- Sometimes we don't completely know the state, so we introduce a new notation
- If our state is $|\psi_i\rangle$ with probability p_i , then we say our state is
- Evolution: $\rho = \sum p_i |\psi_i\rangle \langle \psi_i| \rightarrow \sum p_i U |\psi_i\rangle \langle \psi_i| U^{\dagger} = U \rho U^{\dagger}$
- Measurement: $tr(M_i M_i^{\dagger} \rho)$

■ You cannot clone arbitrary quantum data

- You cannot clone arbitrary quantum data
- Proof: assume you can. Then $\exists U$ such that $U |\psi\rangle |0\rangle = |\psi\rangle |\psi\rangle$

- You cannot clone arbitrary quantum data
- Proof: assume you can. Then $\exists U$ such that $U |\psi\rangle |0\rangle = |\psi\rangle |\psi\rangle$, $U |\phi\rangle |0\rangle = |\phi\rangle |\phi\rangle$
- $\bullet \langle 0 | \langle \phi | U^{\dagger} U | \psi \rangle | 0 \rangle = \langle \phi | \langle \phi | \psi \rangle | \psi \rangle$

- You cannot clone arbitrary quantum data
- Proof: assume you can. Then $\exists U$ such that $U |\psi\rangle |0\rangle = |\psi\rangle |\psi\rangle$, $U |\phi\rangle |0\rangle = |\phi\rangle |\phi\rangle$
- $\bullet \langle 0 | \langle \phi | U^{\dagger} U | \psi \rangle | 0 \rangle = \langle \phi | \langle \phi | \psi \rangle | \psi \rangle$

- Then $\langle \phi | \psi \rangle = 0,1$ only, which is not general. A contradiciton

Threshold Schemes

- A (k, n) threshold scheme on a piece of data is an algorithm to break it up into n pieces such that any subset of size k can be used to reconstruct the data, but any subset of size < k contains no information about the data.
- (n, n) scheme for data d: For 1, ..., n-1 do $x_i \leftarrow \{0, 1\}^{|d|}$,
- $\mathbf{x}_n = x_1 \oplus ... \oplus x_{n-1} \oplus d$
- To reconstruct, $d = x_1 \oplus ... \oplus x_n$
- Shamir Secret Sharing allows for any possible (k, n) scheme with $k \le n$

A bound on threshold schemes

■ If $n \ge 2k$, then no possible (k, n) threshold scheme exists.

A bound on threshold schemes

- If $n \ge 2k$, then no possible (k, n) threshold scheme exists.
- Proof: Assume to the contrary it is possible. Apply the (k,n) scheme to the state to produce n shares
- Take two disjoint sets of k shares each. We can do this since n > 2k.
- Reconstruct the state twice with these two disjoint subsets.
- This contradicts the no-cloning theorem. □

Two more quick results

- If a set of players I is authorized, then \overline{I} is not authorized
- More than a single player will not be able to reconstruct the secret

(2,3) example

- A qutrit is $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle + \gamma |2\rangle$ Consider the map:
- $|0\rangle \mapsto |000\rangle + |111\rangle + |222\rangle$
- $|1\rangle \mapsto |012\rangle + |120\rangle + |201\rangle$

(2,3) example

$$|S\rangle = \alpha |0\rangle + \beta |1\rangle + \gamma |2\rangle$$

$$\blacksquare |S\rangle \mapsto V|S\rangle$$

$$V|S\rangle = \frac{1}{\sqrt{3}}\alpha(|000\rangle + |111\rangle + |222\rangle) + \beta(|012\rangle + |120\rangle + |201\rangle) + \gamma(|021\rangle + |102\rangle + |012\rangle)$$

(2,3) example

- We need to prove that V exists, that its unitary
- lacktriangle For two arbitary qutrits $|\phi\rangle\,, |\psi\rangle$ we inner product $V\,|\phi\rangle\,, V\,|\psi\rangle$

$$|S\rangle \mapsto V |S\rangle$$

$$V|S\rangle = \frac{1}{\sqrt{3}} \left(\alpha (|000\rangle + |111\rangle + |222\rangle \right) +$$
$$\beta (|012\rangle + |120\rangle + |201\rangle) +$$
$$\gamma (|021\rangle + |102\rangle + |012\rangle)$$

$$ho_1 = tr_{23}(\ket{\psi}\bra{\psi}) = rac{1}{3}(\ket{0}\bra{0} + \ket{1}\bra{1} + \ket{2}\bra{2})$$

 $\rho_A\otimes\rho_B\otimes\rho_C$

Add ρ_A to ρ_B , then new ρ_B to ρ_A (all mod 3)

$$(\alpha |0\rangle + \beta |1\rangle + \gamma |2\rangle) \otimes (|00\rangle + |12\rangle + |21\rangle) \otimes \rho_C$$

References

- Cleve, Richard, Daniel Gottesman, and Hoi-Kwong Lo. "How to share a quantum secret." Physical Review Letters 83.3 (1999): 648.
- Hillery, Mark, Vladimír Bužek, and André Berthiaume. "Quantum secret sharing." Physical Review A 59.3 (1999): 1829.
- Crépeau, Claude, Daniel Gottesman, and Adam Smith. "Secure multi-party quantum computation." Proceedings of the thiry-fourth annual ACM symposium on Theory of computing. ACM, 2002.
- Aharonov, Dorit, et al. "Interactive proofs for quantum computations." arXiv preprint arXiv:1704.04487 (2017).

