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1.1 Physics Notation

We describe a quantum state as a vector of the form |ψ〉. In a complex valued vector space. For
any number of vectors in this state, we may superposition them as a linear combination of complex
coefficients. Given some basis of our vector space, we may write any |ψ〉 =

∑n
i=1 ci |ei〉. The

dimension of our vector space in general is infinite (making it a Hillbert space). Any quantum state
can be described by some ket in our Hillbert space.

For each |ψ〉 ∈ V , there exists 〈ψ| ∈ V ∗1 such that 〈ψ| = |ψ〉†.2
The inner product is written naturally as 〈φ|ψ〉 = |φ〉† |ψ〉. the sum of the pairwise components,

and is a complex number.
There is also a less intuitive outer product defined as a matrix |φ〉 〈ψ|. This is an operator

less naturally. Suppose A = |φ〉 〈ψ|, then A |x〉 = |φ〉 〈ψ|x〉 = c |φ〉. While The inner product is a
complex value, since the outer product with a vector is another vector, it must be an operator.

1.2 Quantum Computer

1.2.1 Qubits

A classical computer is simply a Turing machine, or some model of equal power. There is some
infinite tape where each cell may contain a 0 or 1. Instead of bits, a quantum computer has qubits,
which can be a 0, 1 or any superposition of 0 or 1. More formally, instead of 0 or 1, we have a zero
or one vector, denoted as |0〉 and |1〉. Our superposition is |ψ〉 = α |0〉 + β |1〉 with α, β ∈ C such
that |α|2 + |β|2 = 1. If you ever try to measure a qubit, you will only see that you will get |0〉 or
|1〉. If you try to measure it, you will only receive |0〉 with probability |α|2 or |1〉 with probability
|β|2.3 Given this construction, we can then represent a qubit in the form

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (1.1)

Reparametrizing our qubit |ψ〉 in terms of θ, ϕ as angles, we get the analogy of a qubit being in a
state as

1spoken as: ”bra in the dual space”
2The † operator is the hermitian conjugate. It is the complex conjugate, and the transpose. The complex conjuage

just replaces i with −i component wise. If |ψ〉 is a column vector, then its transpose, |ψ〉 is a row vector
3You might think we have four degrees of freedom here with α, β being complex numbers with two real parts each,

but we only have three because the constraint |α|2 + |β|2 = 1
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Figure 1.1: The Bloch sphere.

1.2.2 Multiple Qubits

We can have multi qubit systems.

1.2.3 Quantum Circuits

Hadamard gates, reversible, and diagramming.

1.2.4 No Cloning Theorem

It is impossible to copy or clone a qubit. Intuitively, you may think that the cloning operation
requires the ability to take measurement. We can prove there is no arbitrary operations that can
clone a qubit.

Assume to the contrary there is some unitary transform that can clone qubits. That is, given
on input |ψ〉 |0〉 it outputs |ψ〉 |ψ〉. Written as operators, we have |ψ〉 |ψ〉 = U |ψ〉 |0〉. Since this
unitary transform works for all qubits, we have |ϕ〉 |ϕ〉 = U |ϕ〉 |0〉, for any other qubit |ϕ〉. Lets
inner product these two statements:

〈ψ| 〈ψ|U †U |ϕ〉 |ϕ〉 = 〈0| 〈ψ|ϕ〉 |0〉 (1.2)

〈ψ|ϕ〉2 = 〈ψ|ϕ〉 (1.3)

This implies that 〈ψ|ϕ〉 is 0 or 1, which is not true to the assumption that |ψ〉 , |ϕ〉 were any
arbitrary states.

1.3 Shors Algorithm

1.3.1 Period finding

The period of a function f is some r such that for all x f(x+ r) = f(x). How can this be used for
integer factorization? If f(x) = ax (mod N) then

f(x+ r) = f(x) (1.4)

ax+r ≡ ax (mod N) (1.5)

ar ≡ 1 (mod N) (1.6)

Then for a ∈ ZN , We know r|N .
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1.3.2 The classical portion

Shor’s algorithm has two parts. A quantum portion to find the period in polynomial time, and some
classical processing. For now, suppose that the quantum period finding portion is a polynomial
time oracle. Suppose that we wish to factor N = pq. We can do processing to eliminate smaller
factors before hand to eliminate the chance that we run Shor’s algorithm to retrieve a factor we
could have done classically anyway. For any composite N , it must contain a factor less than

√
N

so for p, q equal bitlength.4, this is our ideal worst case. The algorithm is as follows:

1. a
$← ZN

2. Check if a,N are co-prime5, If they are not then halt and return a

3. Query our oracle for r ← QC(a,N)

4. if r is odd, restart with a different a

5. if ar/2 ≡ −1 (mod N) restart with a different a

6. Return one of gcd(ar/2 − 1, N) or gcd(ar/2 + 1, N)

Why is this correct? Given that ar ≡ 1 (mod N), then (ar/2− 1)(ar/2 + 1) ≡ ar − 1 ≡ 0 (mod N).

1.3.3 Quantum Portion

Eigenvectors intuition.

1.4 Violated Hardness Assumptions

As demonstrated, we have a quantum algorithm for integer factorization in polynomial time. CITE
provides a list of nearly a hundred cryptographic hardness assumptions.

1.4.1 RSA Example

The RSA problem is given N, e,M e (mod N), can you efficiently compute M . You can break the
RSA problem by breaking discrete log, but you can shortcut and break the RSA cryptosystem
by breaking integer factorization. Given N = pq,M e (mod N), you can factor N efficiently to
compute φ(N) = (p − 1)(q − 1), knowing this, and ed ≡ 1 (mod φ(N)), you can obtain d which
lets you solve for M = (M e)d.

1.4.2 Discrete Log

Recall the discrete log problem. Given y = gx (mod N), solve for x = DLOGg(y) The current
state of the art classical algorithm for solving the DLP is the Pollig Hellman algorithm CITE and
it runs in O(

√
N) in the worst case. Solving DLP implies you can factor integers in polynomial

time, but the reverse remains an open question. Shor’s algorithm can be modified to immediately
break discrete log as follows:

4I can factor a 256 bit number into its two factors, both around 127 bits in four minutes on my laptop. If N = pq
and p >> q, then p >>

√
N and q <<

√
N , so when we are trying to find any factor, we will find q much faster. For

PGP, the weakest choice of an RSA modulus was 512 bits.
5Two numbers are a, b co-prime if they share no common factors. This can be tested by checking if gcd(a, b) = 1.

This is computed via the euclidean algorithm, which runs in polynomial time. If a,N are not co-prime, then gcd(a,N)
is an factor of N not equal to 1.
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1. Given y ≡ gx (mod N), g,N, the task is to solve for x. Suppose N is prime6 and g is a
generator

2. Construct the bivariate, periodic function f(x1, x2) = gx1yx2

3. Obtain the pair (r1, r2)← QC(g, y,N) from our quantum oracle such that f(x1, x2) = f(x1+
r1, x2 + r2)

4. return x = − r1
r2

(mod N)

For N composite, this can be extended without knowing the factorization of N , which some messier
cases. Why is this correct? gx1y

x
2 = gx1+r1yx2+r2 ⇐⇒ gr1yr2 ≡ 1 (mod N), but then gr1yr2 ≡

gr1gxr2 ≡ gr1+xr2 ≡ 1 (mod N). Since g is a generator, then r1 + xr2 ≡ 0 (mod N). Solving for x
we get x ≡ − r1

r2
(mod N).

1.5 Grovers Algorithm

Wave my hands really hard, intuition from parallelism. Talk about current work in attacks on
AES(6,681)

1.6 NIST Contest

1.6.1 Background

Quantum Computers are developing far faster than people expected, so NIST decided to start
early on replacing cryptosystems with quantum resistant ones. AES, SHA3 standardizations took
many many years. quantum resistant systems are much less studied. The quantum resistant
cryptoschemes do not appear to just be drop in replacements for how the world currently uses
assymmetric crypto.

1.6.2 Unviolated Assumptions

There were around 69 submissions into round 1. Now 26 have made it into round 2, with 17
cryptosystems for public-key encryption, and 9 for digital signatures. Of the 17 for PKE, 9 are
based on lattice hardness problems, 5 on coding, 1 on isogeny, and 2 on rank hardness problems7 For
the 9 digital signature submissions, 3 are based on lattices, 4 on multivariate, and 2 are classified
as other

1.6.2.1 Lattice Based Cryptosystems

A lattice is a subgroup of Rn that is isomorphic to the additive group Zn, while also spanning the
vector space Rn. Anything in the lattice is a linear combination of some chosen basis of Rn with
integer coefficients. The Shortest Vector Problem (SVP) is as follows. Given L a lattice, its basis
B, λ(L) the shortest nonzero vector in the lattice, and some real γ > 0, output a vector v ∈ L such
that ||v|| ≤ γλ(B).

There is no known quantum algorithm to solve lattice problems, such as SVP efficiently. The
LLL algorithm can approximate solutions in polynomial time. For a while, people thought that

6It works if N is not prime just as well, but requires the chinese remainder theorem, and repeated applications.
7Rank hardness problems are in a subset of coding problems. They are separated because of the significant

difference in the kinds of cryptographic attacks they are subject to CITE NIST STATUS



Lecture 1: August 24 1-5

lattice problems might be efficient generally. In CITE, Ajtai shows how to generate hard instances
of the lattice problem. These are used in the Pailier cryptosystem.

1.6.2.2 Learning with Errors

In 2006, the first hardness conjectures from statistical problems in machine learning were used to
design cryptosystems. They earned the Godel prize in 2018 for their work. Many of the NIST
lattice submissions are based on either Ring learning with Errors (RLWE) or Module Learning
with Errors (MLWE). These problems naturally arise a homomorphic cryptosystem, more so than
how security of Paillier is reduced to shortest vector problems.

DETAILS ON IT

1.6.2.3 Code Based Cryptosystems

Encryption in codebased cryptosystems is usually done by having the plaintext be some uncoded
word, the ciphertext some pertubation of plaintext, and decryption is done by decoding. They tend
to all use the same coding scheme (Goppa) and have larger keys. McEliece

1.6.2.4 Multivariate Cryptosystems

1.6.2.5 Isogeny

Traditional elliptic curve cryptography has its security based on the hardness assumption of the
ECDLP. There is an immediate reduction from Shor’s algorithm for the discrete log to the ECDLP.8

1.6.2.6 Others

Two of the NIST Submissions, Picnic and SPHINCS+ are based entirely on hash and blockcipher
assumptions.

(These are Vlad’s team, PICNIC, which only uses blockciphers and hash functions, and SPHINCS+
by DJB et. al which uses a hash function)

ML
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