Why is Computer Science a Science?
Abrahim Ladha



Goals For Today

* Why do we consider Alan Turing the founder of Computer Science?

* Why is Computer Science a Science, and not an Engineering?
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A Turing Machine is a tuple (Q,T',6, g0, ¢1)
e () =1{qo,-.-,qr} is a finite set of states

e ' ={0,1,._} finite tape alphabet

¢ 0:QxI'=>QxTx{L,R}

e ¢y € () designated start state

e gy € (@ is the instruction to stop




LEMMA 1. If 64(%0) s defined, then 04(t0) & {t0}a, 04(0) > 21o.
PROOF. If 64(%¢) is defined, then there is some value of ¢ such that
TA(?:(), K(t), L(t)), 0(?,0) = K(t), and GA(?:O) > 21. Hence,

\/ T4 (20, 04(%0), ¥); that is, 04(Z0) € {0} a.
Yy
LemMa 2. If {i}4 s infinite, then {t}a M S4 % 4.
PROOF. If {7p}4 is infinite, there is a number m¢ such that mo € {7} 4

and m, > 2i;. Hence, \/ T4(io, mo, ). Let yo be the least such y.

Yy
(Actually, by the definition of the T-predicates there is at most one
such y.) Then T4(iy, mo, yo). Let i, = J(mq, o). Then

mo = K(J(mo, yo)) = K(to); yo = L(J (my, yo)) = L(t).
Hence, T4(io, K(lo), L(to)). Since K(t) = mo > 21y, 04(%0) is defined.

Hence, by Lemma 1, 04(%) € {i0}s. But, 04(i) & S4. Hence,
{io}a M 84 = 4.

":2(1: 2) =2,
"'2(8(93)9 2) =1,
iz(2,1) =3,

i2(2, 8(8(y))) =3,
j2(1: y) =Y,
jz(S(CU), y) =T,

For a set of recursion equations for F* consists of the recursion equations
for F together with the equations,

92(93: 1) =Ii2(f2("r: 1): 2):

g2(z, 8(y)) = (fs(z, S(y)), 92(2, %) )
h2(8(2),y) ==,

ha(g2(2,9), 2) = j2(9:(, %), ¥),

fl(x) = h2(1) :Z;),
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What is the Church-Turing Thesis?

« “Algorithm” is an informal, intuitive notion of a process. A set of instructions to

complete some task.
* A Turing Machine is a formal definition of a model of computation

* The Church-Turing Thesis asserts that the Turing machine captures the intuitive
definition. That everything computable in the intuitive sense is computable by a

Turing machine. But why?



Informally speaking, an algorithm is a collection of simple instructions for car-
rying out some task. Commonplace in everyday life, algorithms sometimes are

called procedures or recipes.| |
Even though algorithms have had a long history in mathematics, the notion

of algorithm itself was not defined precisely until the twentieth century. Before
that, mathematicians had an intuitive notion of what algorithms were, and relied
upon that notion when using and describing them. But that intuitive notion was
insufficient for gaining a deeper understanding of algorithms.

[ntroduction to the Theory of

COMPUTATION

The definition came in the 1936 papers of Alonzo Church and Alan Tur-
ing. Church used a notational system called the A-calculus to define algorithms.
Turing did it with his “machines.” These two definitions were shown to be
equivalent. This connection between the informal notion of algorithm and the
precise definition has come to be called the Church-Turing thesis.
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Interestingly, all the serious proposals for a model of ccﬁgut:ﬁon have the
same power; that is, they compute the same functions or recognize the same
languages. The unprovable assumption that any gencral way to compute will
allow us to compute only the partial-recursive functions (or equivalently, what
Turing machines or modern-day computers can compute) is known as Church’s
hypothesis (after the logician A. Church) or the Church-Turing thesis.

SECOND EDITION




The situation is quite analogous to that
met whenever one attempts to replace a vague concept, having a powerful
intuitive appeal, with an exact mathematical substitute. (An obvious
example is the area under a curve.) In such a case, it is, of course,
pointless to demand a mathematical proof of the equivalence of the two
concepts; the very vagueness of the intuitive concept precludes this.




ELEMENTS
OF THE THEORY
OF COMPUTATION

Turing machines can be imitated by grammars,
which can be imitated by g-recursive functions,
which can be imitated by Turing machines.

The only possible conclusion is that all these approaches to the idea of com-
putation are equivalent. This is Church’s Thesis, extended now to methods

quite different fmm those of the theory of automata.
oo riratimion? idavina ane aspect of computation by
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230 A. M. Turive [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurING.

[Received 28 May, 1936.—Read 12 November, 1936.]



The Direct Appeal to Intuition

First we will agree on an example of a computer, an object performing the

action of computation
We will make slight modifications so small to be undeniable

We will argue that the composition of these modifications is still correct and

conclude
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Computing is normally done by writing certain symbois on paper. We
may suppose this paperis divided into squares like a child’s arithmetic book.
In elementary arithmetic the two-dimensional character of the paper 1s
sometimes used. But such a use is always avoidable, and 1 think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on

one-dimensional paper, z.e. on a tape divided into squares.







| | I shall also
suppose that the number of symbols which may be printed is finite. If we

were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extent§. The effect of this restriction of the number
of symbols is not very serious. It is always possible to use sequences ot
symbols in the place of single symbols. Thus an Arabic numeral such as

17 or 999999999999999 is normally treated as a single symbol.

| The
differences from our point of view between the single and compound symbols.
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.




* Finite work is done in finite time, important for the development of
computational complexity

* The amount of symbols necessary for computation must be finite

COMPLEXIT
_AND REAL
COMPUIATION




The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his ¢ state of mind >’ at that moment.
We may suppose that there is a bound B to the number of symbols or

squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose

| The new observed squares
must be immediately recognisable by the computer. Ithinkitisreasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previously observed square.







We will also suppose
that the number of states of mind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the
number of symbols. If we admitted an infinity of states of mind, some of
them will be ¢ arbitrarily close ” and will be confused.
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Church’s Thesis: Any reasonable model of computation is equivalent to a Turing

machine
Turing’s Thesis: The Turing machine is equivalent in power to the human mind

Church-Turing Thesis: The definition of algorithm is independent of any specific
formalism
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Applications

*  Well specified pseudocode can always be implemented

* A problem unsolvable to a formal model (like a Turing machine) will be
unsolvable to us as well.



A Recipe for All of Computer Science

* Choose an abstract intuitive concept
* Construct a formal definition
 Argue that the intuitive concept corresponds to the formal definition

* Proofs or results involving the formal definition implicate the intuitive concept



‘I feel proud to belong to a field that has
seriously taken on defining (sometimes redefining, sometimes in several ways) and
understanding such fundamental notions that include: collusion, coordination, con-
flict, entropy, equilibrium, evolution, fairness, game, induction, intelligence, inter-
action, knowledge, language, learning, ontology, prediction, privacy, process, proof,
secret, simultaneity, strateqy, synchrony, randomness, and verification.

It is worthwhile reading this list again, slowly. I find it quite remarkable to
contrast the long history, volumes of text written, and intellectual breadth that the

concepts in this list represent, with the small size and the relative youthfulness of
ToC, which has added so much to their understanding. _

MATHEMATICS
T COMPUTATION

A THEORY REVOLUTION!ZWE
TECHMNOLORY AND SCIENCE

Y i o r J




Proof — Frege, Hillbert, Russell, Whitehead, (1900s)
Truth — Tarski (1933)

Computation, Algorithm — Turing (1936)

Information, Communication, Noise — Shannon (1948)
Intelligence — Turing (1950)

Grammatical and Ungrammatical — Chomsky (1950s)
Randomness — Kolmogorov (1963)

Run-time, Complexity — Hartmanis and Stearns (1965)
Efficient — Edmonds and Cobham(1965)

Intractable, Difficult — Cook and Levin (1971, 1973)
Pseudorandomness — Blum, Micali (1982)

Secure — Goldwasser, Micali (1982)

Learning — Valiant (1984)

Knowledge — Babai, Goldwasser, Micali, Rackoff, Moran, (1989+)
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Computer Science has nothing to do with computers. These are just tools.

Chemistry is not about beakers

We (Computer Scientists) have as big of a claim to understanding the beauty of

the natural world as much as physicists or biologists do
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