
High-Throughput Chain Replication for Read-Mostly 
Workloads

Jeff Terrace & Mike Freedman
Presented by Abrahim Ladha



Object Storage (Put/Get)
● Given an identifier, you can query an object
● Many websites don’t need complex joins
● Better scaling and speed for these services
● They achieve this with Eventual Consistency instead of Strong Consistency



Eventual Consistency

Manager

Replicas



Eventual Consistency

Manager

Replicas

WRITE 
REQUEST



Eventual Consistency

Manager

Replicas

WRITE 
REQUEST



Eventual Consistency

Manager

Replicas

WRITE 
REQUEST

READ 
REQUEST

READ 
REQUEST



Eventual Consistency
● Writes are ordered after commit
● Reads can be out of order, even stale.
● Lets object storage systems scale very well, with high throughput
● Hard for programmer to know what to do in failure, or detect sta
● Two successive reads could go back in time. 



Strong Consistency
● Instead of the manager just sending out the messages, the manager and the 

replicas perform an agreement protocol, something like two phase commit.
● Reads and Writes strictly ordered
● Easier programming.
● Expensive to implement
● Does not scale as well
● Potential availability sacrifice



Chain Replication [van Renesse & Schneider, OSDI 2004]

TailHead Replicas

● Writes all go to the head
● Propagate serially
● Once it reaches tail, it is committed
● Acknowledgement is propagated back 

to the head

● Read requests all go to the head
● This gives us strong consistency
● Tail decides ordering of many reads

RRWR



Chain Replication [van Renesse & Schneider, OSDI 2004]

TailHead Replicas

● Strong Consistency and replication is simple.
● Increased write throughput because writes are pipelined down the chain
● Low read throughput because all reads have to go to the tail
● CRAQ increases the read throughput
● Motivation from industry: Many applications are very read heavy

RRWR



Clean Reads

● Two states per object, clean, and dirty
● If object is clean, then we can read anywhere!

READ 
REQUEST

READ 
REQUEST

READ 
REQUEST

READ 
REQUEST

READ 
REQUEST



Writes
WRITE 
REQUEST



Writes
WRITE 
REQUEST



Writes
WRITE 
REQUEST



Writes
WRITE 
REQUEST



Clean Read

● If read request is made to clean replica, then it can respond

READ 
REQUEST



Dirty Read

● What happens for a read request to a dirty object?

READ 
REQUEST



Dirty Read

● What happens for a read request to a dirty object?

READ 
REQUEST

What do 
you have?



Dirty Read

● No matter where we read in the chain, we still get 

READ 
REQUEST

What do 
you have?



Writes
WRITE 
REQUEST



Writes
WRITE 
REQUEST

● Now if replica queries tail, they get
● Tail commits when it updates

READ 
REQUEST



Writes
WRITE 
REQUEST

● Lazy model: Only update replica on read
● Optimization: Propagate backwards to update earlier

READ 
REQUEST



Writes
WRITE 
REQUEST



Writes
WRITE 
REQUEST



Writes
WRITE 
REQUEST



Writes
WRITE 
REQUEST

● Once head updates, can respond to write request



Optimizations
● Each chain forms a group to multicast, tail sends acknowledgement to whole 

chain
● Suppose we have a large write. The head can propagate it to entire chain, 

each replica stores and marks it as temporary, then head propagates small 
message to mark as ready



From Chain Replication
● Maintains strong consistency
● Simple to replicate
● Increases write throughput

Added by CRAQ

● Read throughput scales for read mostly workloads
○ If chain is mostly read, then throughput should scale linearly with the chain length

● Supports Eventual Consistency when strong consistency isn’t needed



Multi Datacenter CRAQ

● Writes must still go to global head
● Dirty read queries local tail instead

○ If the local tail is dirty, then it has to contact the global tail

● Maybe some objects are only relevant to some datacenters



Multi Datacenter CRAQ

● If no current writes to D1, then D1 turns off
● Local head of D2 is now global head



Multi Datacenter CRAQ

● If there was a write to the D1, then actually D2, D3 turn off
● Local tail of D1 is now global tail

WR


