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Object Storage (Put/Get)
● Given an identifier, you can query an object
● Many websites don’t need complex joins
● Better scaling and speed for these services
● They achieve this with Eventual Consistency instead of Strong Consistency
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Eventual Consistency
● Writes are ordered after commit
● Reads can be out of order, even stale.
● Lets object storage systems scale very well, with high throughput
● Hard for programmer to know what to do in failure, or detect sta
● Two successive reads could go back in time. 



Strong Consistency
● Instead of the manager just sending out the messages, the manager and the 

replicas perform an agreement protocol, something like two phase commit.
● Reads and Writes strictly ordered
● Easier programming.
● Expensive to implement
● Does not scale as well
● Potential availability sacrifice



Chain Replication [van Renesse & Schneider, OSDI 2004]

TailHead Replicas

● Writes all go to the head
● Propagate serially
● Once it reaches tail, it is committed
● Acknowledgement is propagated back 

to the head

● Read requests all go to the head
● This gives us strong consistency
● Tail decides ordering of many reads

RRWR



Chain Replication [van Renesse & Schneider, OSDI 2004]

TailHead Replicas

● Strong Consistency and replication is simple.
● Increased write throughput because writes are pipelined down the chain
● Low read throughput because all reads have to go to the tail
● CRAQ increases the read throughput
● Motivation from industry: Many applications are very read heavy
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Clean Reads

● Two states per object, clean, and dirty
● If object is clean, then we can read anywhere!
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Clean Read

● If read request is made to clean replica, then it can respond
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Dirty Read

● What happens for a read request to a dirty object?
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Dirty Read

● What happens for a read request to a dirty object?
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Dirty Read

● No matter where we read in the chain, we still get 
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● Now if replica queries tail, they get
● Tail commits when it updates
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● Lazy model: Only update replica on read
● Optimization: Propagate backwards to update earlier

READ 
REQUEST



Writes
WRITE 
REQUEST



Writes
WRITE 
REQUEST



Writes
WRITE 
REQUEST



Writes
WRITE 
REQUEST

● Once head updates, can respond to write request



Optimizations
● Each chain forms a group to multicast, tail sends acknowledgement to whole 

chain
● Suppose we have a large write. The head can propagate it to entire chain, 

each replica stores and marks it as temporary, then head propagates small 
message to mark as ready



From Chain Replication
● Maintains strong consistency
● Simple to replicate
● Increases write throughput

Added by CRAQ

● Read throughput scales for read mostly workloads
○ If chain is mostly read, then throughput should scale linearly with the chain length

● Supports Eventual Consistency when strong consistency isn’t needed



Multi Datacenter CRAQ

● Writes must still go to global head
● Dirty read queries local tail instead

○ If the local tail is dirty, then it has to contact the global tail

● Maybe some objects are only relevant to some datacenters



Multi Datacenter CRAQ

● If no current writes to D1, then D1 turns off
● Local head of D2 is now global head



Multi Datacenter CRAQ

● If there was a write to the D1, then actually D2, D3 turn off
● Local tail of D1 is now global tail

WR


